Glutathione S-transferases from the white-rot fungus, Phanerochaete chrysosporium.
نویسندگان
چکیده
A glutathione S-transferase (GST) was purified to homogeneity from the white-rot fungus, Phanerochaete chrysosporium, by affinity chromatography on glutathione-agarose followed by Mono-Q ion-exchange FPLC. This protein immunoblotted with antisera to rat Theta class GST 5-5 and also showed N-terminal sequence similarity to the Theta class, including the presence of a conserved serine residue that has been specifically implicated in catalysis in this class [Wilce, Board, Feil and Parker (1995) EMBO J. 14, 2133-2143] and other residues conserved in plant sequences. Catalytic activity was found to be highly labile in the purified protein, although preliminary evidence for activity (approx. 120 m-units/mg) with 1,2-epoxy-3-(p-nitrophenoxy)propane was obtained in some preparations. The enzyme seems to be a dimer with a subunit molecular mass of 25 kDa by SDS/PAGE. The native molecular masses estimated by non-denaturing electrophoresis and by Superose-12 gel filtration were 58 and 45 kDa respectively. A second protein purified in this study also gave low level of activity with 1,2-epoxy-3-(p-nitrophenoxy)propane and had a subunit molecular mass of 28 kDa (native size 62-63 kDa), but did not immunoblot with any GST class and seemed to be N-terminally blocked.
منابع مشابه
Biological Removal of Dibenzothiophene from Soil and Changes to soil Sulfate by White-Rot Fungus Phanerochaete chrysosporium
This study investigated biodegradation of dibenzothiophene (DBT) in marsh soil spiked bywhite-rot fungus Phanerochaete chrysosporium. Soil samples were spiked with 100 ppm DBTand incubated at 30°C in a dark chamber for 30 days. Samples were evaluated for pH, Mnperoxidaseactivity, sulfate ion concentration and growth during the tests. Results showedmaximum levels of pH, Mn-peroxidase and sulfate...
متن کاملIdentification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium.
Previous studies have shown that the cellobiohydrolases of the white rot basidiomycete Phanerochaete chrysosporium are encoded by a family of structurally related genes. In this investigation, we identified and sequenced the most highly transcribed gene, cbh1-4. Evidence suggests that in this fungus the dominant isozyme, CBH1, is encoded by chb1-4.
متن کاملRole of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium.
The white rot fungus Phanerochaete chrysosporium extensively degraded the endocrine disruptor chemical nonylphenol (NP; 100% of 100 ppm) in both nutrient-limited cultures and nutrient-sufficient cultures. The P450 enzyme inhibitor piperonyl butoxide caused significant inhibition (approximately 75%) of the degradation activity in nutrient-rich malt extract (ME) cultures but no inhibition in defi...
متن کاملThe GSTome Reflects the Chemical Environment of White-Rot Fungi
White-rot fungi possess the unique ability to degrade and mineralize all the different components of wood. In other respects, wood durability, among other factors, is due to the presence of extractives that are potential antimicrobial molecules. To cope with these molecules, wood decay fungi have developed a complex detoxification network including glutathione transferases (GST). The interactio...
متن کاملToxicity of Pristine and Chemically Functionalized Fullerenes to White Rot Fungus Phanerochaete chrysosporium
Fullerenes are widely produced and applied carbon nanomaterials that require a thorough investigation into their environmental hazards and risks. In this study, we compared the toxicity of pristine fullerene (C60) and carboxylated fullerene (C60-COOH) to white rot fungus Phanerochaete chrysosporium. The influence of fullerene on the weight increase, fibrous structure, ultrastructure, enzyme act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 324 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1997